
Oblivious RAM, Continued
CS 598 DH

Today’s objectives

See a more practical construction of ORAM

Prove ORAM lower bound

3

Setting General-Purpose Tools

Primitives
Oblivious Transfer
Pseudorandom functions/encryption
Commitments

GMW Protocol
Multi-party
Multi-round

Semi-honest Security

Malicious Security

Zero Knowledge

GMW
Compiler

Garbled Circuit
Constant Round
Two Party

ORAM

⨁
∧

CPU

random access machine

Main Memory

Oblivious RAM Protocol

Today

4

S C

0

1

2

3

4

5

6

7

4

4

???

Basic idea: For each logical access,
the client asks for multiple physical

elements from the server5

Oblivious RAM

012 345 678 d0d1 d2

access(7)

5

F(Ks,2) F(Ks, d1) F(Ks,5) F(Ks,8) F(Ks, d2) F(Ks,4) F(Ks,7) F(Ks,3) F(Ks, d0) F(Ks, d1) F(Ks, d0) F(Ks, d6)

7

S C

F(Ks, d0)

d0

7

Square Root ORAM (Ostrovsky ’92)

Square Root ORAM (Ostrovsky ’92)

5 7

For every logical access, the server sends to the client
amortized physical elementsÕ(n)

Overhead

Square Root ORAM (Ostrovsky ’92)

5 7

For every logical access, the server sends to the client
amortized physical elementsÕ(n)

Overhead

Natural question: How low can we go in terms of overhead?

 physical accessesO(log2 n)

S C

5

3 2 0

4

1 6

7

……

S C

5

3 2 0

4

1 6

7

……

Path Invariant: Each
node is assigned a
uniformly random leaf

S C

5

3 2 0

4

1 6

7

…

…
Logical
address Leaf

0 10

1 5

2 7

… …

Position Map

Path Invariant: Each
node is assigned a
uniformly random leaf

S C

5

3 2 0

4

1 6

7

…

To find an element,
client searches the
path to the leaf

…
Logical
address Leaf

0 10

1 5

2 7

… …

Position Map

S C

5

3 0

4

1 6

7

…

…
Logical
address Leaf

0 10

1 5

2 7

… …

Position Map

2

Fetched element is stored in
a small stash on the client

S C

5

3 0

4

1 6

7

…

…

2

If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them

S C

5

3 0

4

1 6

7

…

…

2

If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them

Eviction: Push elements in
stash and on path as far
down the path as possible
while keeping the path
invariant

S C

3 0

5

1 6

7

…

…

If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them

Eviction: Push elements in
stash and on path as far
down the path as possible
while keeping the path
invariant

2

Path ORAM

Each data item is assigned
a uniformly random leaf

To perform an access, client
queries the path to the
appropriate leaf

Because leaves are chosen
uniformly, we can simulate
what the server sees
After access, the client
writes back to the stash
and assigns a fresh leaf
To avoid the stash growing
too large, client reads paths
and evicts them

Path ORAM

Each data item is assigned
a uniformly random leaf

To perform an access, client
queries the path to the
appropriate leaf

Because leaves are chosen
uniformly, we can simulate
what the server sees
After access, the client
writes back to the stash
and assigns a fresh leaf
To avoid the stash growing
too large, client reads paths
and evicts them

If an element does not fit on
the path, we keep it in stash
Careful analysis shows that
w.h.p. the stash will not
grow “too big”

Path ORAM

Question: The position map has O(n) size. How does the client store it?

Path ORAM

Question: The position map has O(n) size. How does the client store it?

Answer: With another (recursively instantiated) ORAM. There will be
O(log n) total levels of ORAM.

Path ORAM

Question: The position map has O(n) size. How does the client store it?

Answer: With another (recursively instantiated) ORAM. There will be
O(log n) total levels of ORAM.
An ORAM requires reading a path of length O(log n), and there are
O(log n) ORAMs

 total blow-upO(log2 n)

 physical accessesO(log2 n)

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Fact (informal): Any secure ORAM must
incur overhead at least Ω(log n)

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Fact (informal): Any secure ORAM must
incur overhead at least Ω(log n)

Combines two concepts:

• All access patterns should look the

same to the server

• Certain access patterns will force the

client to save its data on the server,
then retrieve it later

S C

4
???

26

We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
protocol is

S C

4
???

27

Model

We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
protocol is

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)

S C

4
???

28

Model

We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
protocol is

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:
1. C queries location

2. S sends content of location

3. C sends back new value

4. S saves the new value in location

i
i

i

S C

4
???

29

Model

We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
protocol is

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:
1. C queries location

2. S sends content of location

3. C sends back new value

4. S saves the new value in location

i
i

i

Client can hold only
 data itemsO(1)

Write
3

Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

Logical Access
Pattern

S C

4
???

Write
3

Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

Logical Access
Pattern

n
S C

4
???

Logical Access
Pattern Write

0

Physical Access
Pattern

Logical Access
Pattern Write

0

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Logical Access
Pattern Write

0

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Write
3

Probe
13

Probe
52

Probe
19

Logical Access
Pattern Write

3
Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Probe
13

Probe
52

Probe
19

Probe
20

Probe
21

Probe
3

Logical Access
Pattern Write

3
Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

The logical access pattern implicitly has dependencies

The client must somehow get all data to move
from the source to the target of the arrow

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Probe
13

Probe
52

Probe
19

Probe
20

Probe
21

Probe
3

Logical Access
Pattern Write

3
Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Probe
13

Probe
52

Probe
19

Probe
20

Probe
21

Probe
3

Basic Observation: If the client writes data
using a particular sequence of probes, it must

probe that same location again to read the data

Logical Access
Pattern Write

3
Read
0

Read
0

Write
1

Read
1

Read
3

Write
3

Write
0

Physical Access
Pattern

Probe
17

Probe
42

Probe
0

Probe
13

Probe
52

Probe
19

Probe
20

Probe
21

Probe
3

Basic Observation: If the client writes data
using a particular sequence of probes, it must

probe that same location again to read the data

We can construct access patterns that are
particularly “difficult”

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

We can construct access patterns that are
particularly “difficult”

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0
} }

The client has to move all data from the left half
of the access pattern to the right half

The client cannot remember all of its data
locally, so it must send it to the server

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0
} }

The client has to move all data from the left half
of the access pattern to the right half

The client cannot remember all of its data
locally, so it must send it to the server

Information theoretically, the client must save
 items to the serverO(n)

n

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

The client must perform repeated probes
to accommodate this access pattern

Ω(n)

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

The client must perform repeated probes
to accommodate this access pattern

Ω(n)

Key Idea: ORAM security implies that even for any
other access pattern, there must be at least
probes allowing to move all data from left to right

Ω(n)

Read
0

Write
0

Write
1

Read
1

Read
0

Write
0

Write
1

Read
1

Read
0

Write
0

Write
1

Read
1

Read
0

Write
0

Write
1

Read
1

} } } }

The client has to move all data from each left
half of the access pattern to each right half

The client cannot remember all of its data
locally, so it must send it to the server

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

Client must request access
to the same memory

locations in the left and the
right subtree

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

There are physical
locations in common in the

left and right subtrees

Ω(n)Client must request access
to the same memory

locations in the left and the
right subtree

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

There are probes in
common in the left and right

subtrees

Ω(n)Client must probe the same
memory locations in the left

and the right subtree
≥ n/2

Write
3

Read
2

Read
0

Write
1

Read
1

Read
3

Write
2

Write
0

≥ n/2

Write
3

Read
3

Read
0

Read
0

Write
0

Read
0

Read
0

Write
0

≥ n/2

Read
0

Write
0

Write
1

Read
1

≥ n/2

Read
0

Write
0

Write
1

Read
1

≥ n/4

≥ n/2

Read
0

Write
0

Write
1

Read
1

≥ n/4

≥ n/2

≥ n/4

≥ n/8 ≥ n/8 ≥ n/8 ≥ n/8

…

≥ n/4

≥ n/2

≥ n/4

…

Ω(n log n)

≥ n/8 ≥ n/8 ≥ n/8 ≥ n/8

≥ n/4

≥ n/2

≥ n/4

log2(n)

Any ORAM must have
 overheadΩ(log n)

Any ORAM must have
 overheadΩ(log n)

… and there exists an
ORAM with

overhead
O(log n)

