Oblivious RAM, Continued

CS 598 DH

Today's objectives

See a more practical construction of ORAM

Prove ORAM lower bound

Setting

Semi-honest Security

General-Purpose Tools

GMW Protocol

Multi-party
Multi-round

Garbled Circuit
Constant Round

Two Party

Primitives

Oblivious Transfer
Pseudorandom functions/encryption
Commitments
ORAM

0
1
2
7
7
7
7
7

Oblivious RAM

Basic idea: For each logical access, the client asks for multiple physical elements froms the server

Square Root ORAM (Ostrovsky '92)

C

Square Root ORAM (Ostrovsky '92)

Overhead

For every logical access, the server sends to the client amortized $\tilde{O}(\sqrt{n})$ physical elements

Square Root ORAM (Ostrovsky '92)

$$
\text { amortized } \tilde{O}(\sqrt{n}) \text { physical elements }
$$

Natural question: How low can we go in terms of overhead?

EMIL STEFANOV, UC Berkeley
MARTEN VAN DIJK, University of Connecticut
LAINE SHI, Cornell University
-H. HUBERT CHAN, University of Hong Kong
CHISTOPHER FLETCHER, University of Ilineis at Urbana-Champaign
,
We present Path ORAM, an extremely simple Oblivious RAM protocol with a small amount of client storage.
Partly yue to its simplicity, Path ORAM is he Partly due to its simplicity, Path ORAM is the must practical ORAM scheme known to date with small dien storagc. Wc formally prove that Path ORAM has a $O(\log N)$ bandwidth cost for blocks of $\operatorname{sizc} B=\Omega\left(\log ^{2} N\right)$ its. For such black sizes, Path ORAM is asymptotically better than the hest-known ORAM schemes with mall client storage. Due to its practicality, Path ORAM has been adopted in the design of secure processor
since its proposal. ategories and Subjec
General Terms: Algorithms, Security
Additional Key Words and Phrases: Oblivious RAM, ORAM, Path ORAM, access pattern
ACM Reference format: Emil Sefeanov, Martiten Van Dijk, Elaize Shi, T-H. Hubert Chan, Christopher Fletcher, Ling Ren, Xiargyzo Yu
nd Srinivas Devadas. 2018. Path ORAM. An Extremely Simple Oblivicus RAM Protocol. T. ACM 65, 1, Article (Apsril 2018), 26 pages
conference version of the articie has appeared in ACM Conference on Computer and Communications Searity (CCS),
This work is partially supported by the NSF Graduate Research Fellowship gran:s DGEE-0946797 and DGE-1122374, the仿 on Web Services in Eccucation program. Any opinions, fndings, and conclus.ons or reesmmendations expressed in this Waterial are thoss of the author(s) and do not recessarily reffect the views of the finding agenciess.
uthors' addresses: E. Stefanov, Department of Electrical. Engineering and Computer Sciences, UC Berkeles, CA 94720 SA; email: enii(eberkeley.edu; M. M. Dijk, Electrical and Computing Engineering Department, University of Connetti ,

Sermission to make digital or hard coples of ell or prant of this work for personal or classrcom use is granted without fee ed for profit or commercia advantage and that copies bear this notice and he full citation on the first page. Copyrights for components of this work owred by others than ACM must be honored. ior specific permission ardior a t fee. Request permissions from permissions@acm.org
2018 ACM 0004-5411/2018/(04-9

$O\left(\log ^{2} n\right)$ physical accesses

```
Access(op, a, data*)
1: x}\leftarrow\mathrm{ position[a]
2: position[a] }\leftarrow\mp@subsup{x}{}{*}\leftarrow\mathrm{ UniformRandom (0 .. 2 2 L - )
3: for }\ell\in{0,1,\ldots,L} d
4: }
5: end for
6: data }\leftarrow\mathrm{ Read block a from }
7: if op = write then
8: }\quadS\leftarrow(S-{(\textrm{a},x,\mathrm{ data })})\cup{(\textrm{a},\mp@subsup{x}{}{*},\mp@subsup{\mathrm{ data}}{}{*})
9: end i
10: for }\ell\in{L,L-1,\ldots,0} do
11: }\quad\mp@subsup{S}{}{\prime}\leftarrow{{(\mp@subsup{\textrm{a}}{}{\prime},\mp@subsup{x}{}{\prime},\mp@subsup{\textrm{data}}{}{\prime})\inS:\mathcal{P}(x,\ell)=\mathcal{P}(\mp@subsup{x}{}{\prime},\ell)
12:
13:
14: WriteBucket(\mathcal{P}(x,\ell),\mp@subsup{S}{}{\prime})
15: end for
16: return data
```

Fig. 1. Protocol for data access. Read or write a data block identified by a. If op = read, the input parameter data ${ }^{*}=$ None, and the Access operation reads block a from the ORAM. If op = write, the Access operation writes the specified data* to the block identified by a and returns the block's old data.

To find an element, client searches the path to the leaf

Logical address	Leaf
$\mathbf{0}$	10
$\mathbf{1}$	5
$\mathbf{2}$	$\mathbf{7}$
$\boldsymbol{\ldots}$	\ldots
Position Map	

If we continue to do this, stash will grow

Client chooses two paths and evicts elements along them

Eviction: Push elements in stash and on path as far down the path as possible while keeping the path invariant

If we continue to do this, stash will grow

Client chooses two paths and evicts elements along them

Eviction: Push elements in stash and on path as far down the path as possible while keeping the path invariant

Path ORAM

Each data item is assigned a uniformly random leaf

To perform an access, client queries the path to the appropriate leaf

Because leaves are chosen uniformly, we can simulate what the server sees
After access, the client writes back to the stash and assigns a fresh leaf
To avoid the stash growing too large, client reads paths and evicts them

Path ORAM

Each data item is assigned a uniformly random leaf

To perform an access, client queries the path to the appropriate leaf

Because leaves are chosen uniformly, we can simulate what the server sees
After access, the client
If an element does not fit on the path, we keep it in stash
Careful analysis shows that w.h.p. the stash will not grow "too big" writes back to the stash and assigns a fresh leaf
To avoid the stash growing too large, client reads paths and evicts them

Path ORAM

Question: The position map has $\mathrm{O}(\mathrm{n})$ size. How does the client store it?

Path ORAM

Question: The position map has $\mathrm{O}(\mathrm{n})$ size. How does the client store it?
Answer: With another (recursively instantiated) ORAM. There will be O(log n) total levels of ORAM.

Path ORAM

Question: The position map has $\mathrm{O}(\mathrm{n})$ size. How does the client store it?
Answer: With another (recursively instantiated) ORAM. There will be O(log n) total levels of ORAM.

An ORAM requires reading a path of length $\mathrm{O}(\log n)$, and there are O(log n) ORAMs
$O\left(\log ^{2} n\right)$ total blow-up

EMIL STEFANOV, UC Berkeley
MARTEN VAN DIJK, University of Connecticut
LAINE SHI, Cornell University
-H. HUBERT CHAN, University of Hong Kong
CHISTOPHER FLETCHER, University of Ilineis at Urbana-Champaign
,
We present Path ORAM, an extremely simple Oblivious RAM protocol with a small amount of client storage.
Partly yue to its simplicity, Path ORAM is he Partly due to its simplicity, Path ORAM is the must practical ORAM scheme known to date with small dien storagc. Wc formally prove that Path ORAM has a $O(\log N)$ bandwidth cost for blocks of $\operatorname{sizc} B=\Omega\left(\log ^{2} N\right)$ its. For such black sizes, Path ORAM is asymptotically better than the hest-known ORAM schemes with mall client storage. Due to its practicality, Path ORAM has been adopted in the design of secure processor
since its proposal. ategories and Subjec
General Terms: Algorithms, Security
Additional Key Words and Phrases: Oblivious RAM, ORAM, Path ORAM, access pattern
ACM Reference format: Emil Sefeanov, Martiten Van Dijk, Elaize Shi, T-H. Hubert Chan, Christopher Fletcher, Ling Ren, Xiargyzo Yu
nd Srinivas Devadas. 2018. Path ORAM. An Extremely Simple Oblivicus RAM Protocol. T. ACM 65, 1, Article (Apsril 2018), 26 pages
conference version of the articie has appeared in ACM Conference on Computer and Communications Searity (CCS),
This work is partially supported by the NSF Graduate Research Fellowship gran:s DGEE-0946797 and DGE-1122374, the仿 on Web Services in Eccucation program. Any opinions, fndings, and conclus.ons or reesmmendations expressed in this Waterial are thoss of the author(s) and do not recessarily reffect the views of the finding agenciess.
uthors' addresses: E. Stefanov, Department of Electrical. Engineering and Computer Sciences, UC Berkeles, CA 94720 SA; email: enii(eberkeley.edu; M. M. Dijk, Electrical and Computing Engineering Department, University of Connetti ,

Sermission to make digital or hard coples of ell or prant of this work for personal or classrcom use is granted without fee ed for profit or commercia advantage and that copies bear this notice and he full citation on the first page. Copyrights for components of this work owred by others than ACM must be honored. ior specific permission ardior a t fee. Request permissions from permissions@acm.org
2018 ACM 0004-5411/2018/(04-9

$O\left(\log ^{2} n\right)$ physical accesses

```
Access(op, a, data*)
1: x}\leftarrow\mathrm{ position[a]
2: position[a] }\leftarrow\mp@subsup{x}{}{*}\leftarrow\mathrm{ UniformRandom (0 .. 2 2 L - )
3: for }\ell\in{0,1,\ldots,L} d
4: }
5: end for
6: data }\leftarrow\mathrm{ Read block a from }
7: if op = write then
8: }\quadS\leftarrow(S-{(\textrm{a},x,\mathrm{ data })})\cup{(\textrm{a},\mp@subsup{x}{}{*},\mp@subsup{\mathrm{ data}}{}{*})
9: end i
10: for }\ell\in{L,L-1,\ldots,0} do
11: }\quad\mp@subsup{S}{}{\prime}\leftarrow{{(\mp@subsup{\textrm{a}}{}{\prime},\mp@subsup{x}{}{\prime},\mp@subsup{\textrm{data}}{}{\prime})\inS:\mathcal{P}(x,\ell)=\mathcal{P}(\mp@subsup{x}{}{\prime},\ell)
12:
13:
14: WriteBucket(\mathcal{P}(x,\ell),\mp@subsup{S}{}{\prime})
15: end for
16: return data
```

Fig. 1. Protocol for data access. Read or write a data block identified by a. If op = read, the input parameter data ${ }^{*}=$ None, and the Access operation reads block a from the ORAM. If op = write, the Access operation writes the specified data* to the block identified by a and returns the block's old data.

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound
Kasper Green Larsen* and Jesper Buus Nielsen ${ }^{*}$ Computer Science \& DIGIT, Aarhus Universit

Abstract. An Oblivious RAM (ORAM) introduced by Gole memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the band formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must overhead, i.e., the mutipicicaive factor extra memory blocks that must
be accessed to hide the operation sequence. In their seminal paper in
troducing the ORM, Goldrech and ostrovky proved an amortized troducing the ORAM, Goldreich and Ostrovsky proved an amortized
$\Omega(\lg n)$ bandwidth overhead lower bound for ORAMs with memory size n. Their n lower bound is very strong in the sense that it applies to the "offine" setting in which the ORAM knows the entire sequence of oper ations ahead of time.
However, as pointed out by Boyle and Naor [ITCS' 16$]$ in the paper "Is there an oblivious RAM lower bound?", there are two caveats with the
lower bound of Goldreich and Ostrovky: (1 it only applies to "balls lower bound of Goldreich and Ostrovsky: (1) it only applies so "balls
in bins" alogorithms, i.e, alogithm where the RAM may only shuffe
blocks around and not apply any sophisticated encoding of the data, and (2), it only appleies to statistically secure constructions. Boyle end
Naor showed that removing the "balls in bins" assumption would result Naor showed that removing the balls in bins assumption would result problem in circuit complexity. As a way to circumventing this barrier,
they also proposed a notion of an "online" ORAM, which is an ORAM they also proposed a notion of an orinine ORA, which is an ORAM They argued that most known ORAM constructions work in the online setting as well
Our contribution
Our contribution is an $\Omega(\lg n)$ lower bound on the bandwidth overhead
of any online ORAM, even if we require only computational security and of any online ORAM, even if we require only computational security and
allow arbitrary representations of data, thus greatly strengthening the
lower bound of Goldreich and Ostrovsky in the olline settin bound applies to ORAMs with memory size n and any word size $r \geq 1$.

Fact (informal): Any secure ORAM must incur overhead at least $\Omega(\log n)$

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound!
Kasper Green Larsen* and Jesper Buus Nielsen** Computer Scienco. Aarhus University
Computer Science \& DIGIT, Aarhus University

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovky [JACM'96] is a (possibly randomized) RAM, for which the memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the band formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the muttipicative factor extra memory blocks that must be accessed to hide the operation sequence. In their seminal paper introducing the ORAM, Goldreich and Ostrovsky proved an amortized
$\Omega(l \mathrm{n})$ bandwidt $\Omega(\mathrm{Ig} n)$ bandwer bunctical
n. Their $l o w e r ~ b o u n d ~ i s ~ v e r y ~ s t r o n g ~ i n ~ t h e ~ s e n s e ~ t h a t ~ i t ~ a p p l i e s ~ t o ~ t h e ~$ "ofline" setting in which the ORAM knows the entire sequence of operHowever, as pointed out by Boyle and Naor [ITCS'16] in the paper "Is there an oblivious RAM lower bound?", there are two caveats with the Lower bound of Gladreich and Ostrovsky: (1) it only applies to "balls
in bins" algorithms, i.e, algorithms where the ORAM May only shuffe blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the "ralls in bins" assumption would result
in Naor showed that removing for sorting circuits, a long standing open
in super linear lower bound for
problem in circuit complexity. As a way to circumventing this barrier, problem in circuit complexity. As a way to circumventing this aritir
they also proposed a notion of an "online" ORAM, which is an ORAM
竍 they also proposed a even if the operations artive in an online manner.
that remins secure
They argued that most known ORAM constructions work in the online They argued that most known ORAM constructions work in the onime
setting a well
Our contribution is an $\Omega(\lg n)$ lower bound on the bandwidth overhead Of any online ORAM, ven if we require only computational security and arlow arbitrary reperesentations of data, thus greatly ystrengthening the
lower bound of Goldreich and Ostrovky in the online setting. Our lower

Fact (informal): Any secure ORAM must incur overhead at least $\Omega(\log n)$

Combines two concepts:

- All access patterns should look the same to the server
- Certain access patterns will force the client to save its data on the server, then retrieve it later

We are trying to prove that any ORAM protocol must have log overhead

Important to formalize what an ORAM protocol is

We are trying to prove that any ORAM protocol must have log overhead

Important to formalize what an ORAM protocol is

Model

Client learns its queries one at a time, and must satisfy any reads as soon as they come in (online)

We are trying to prove that any ORAM protocol must have log overhead

Important to formalize what an ORAM protocol is

Model

Client learns its queries one at a time, and must satisfy any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:

1. C queries location i
2. S sends content of location i
3. C sends back new value
4. S saves the new value in location i

We are trying to prove that any ORAM protocol must have log overhead

Important to formalize what an ORAM protocol is

Model

Client learns its queries one at a time, and must satisfy any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:

1. C queries location i
2. S sends content of location i

Client can hold only
3. C sends back new value
4. S saves the new value in location i

Logical Access Pattern

Logical Access Pattern

Physical Access
Pattern

Logical Access Pattern

Physical Access
Pattern

| Probe |
| :---: | :---: |
| 17 | | Probe |
| :---: |
| 42 | | Probe |
| :---: |
| 0 |

Logical Access Pattern

Physical Access	$\begin{array}{c}\text { Probe } \\ 17\end{array}$
Pattern	$\begin{array}{c}\text { Probe } \\ 42\end{array}$

0\end{gathered} \begin{array}{|cc|}Probe

13\end{array}\)\begin{tabular}{|cc|}
\hline Probe

52

\hline Probe

19
\end{tabular}

Logical Access Pattern

Physical Access Pattern

Probe 17	Probe 42	Probe 0	Probe 13	Probe 52	Probe 19	Probe 20	Probe 21	Probe 3

The logical access pattern implicitly has dependencies
The client must somehow get all data to move from the source to the target of the arrow

Logical Access Pattern

Physical Access Pattern

Basic Observation: If the client writes data using a particular sequence of probes, it must probe that same location again to read the data

Logical Access Pattern

Physical Access Pattern

Basic Observation: If the client writes data using a particular sequence of probes, it must probe that same location again to read the data

We can construct access patterns that are particularly "difficult"

We can construct access patterns that are particularly "difficult"

Write	Write	Write	Write 3	Read 0	Read 1	Read 2	Read 3

The client has to move all data from the left half of the access pattern to the right half

The client cannot remember all of its data locally, so it must send it to the server

The client has to move all data from the left half of the access pattern to the right half

The client cannot remember all of its data locally, so it must send it to the server Information theoretically, the client must save $O(n)$ items to the server

The client must perform $\Omega(n)$ repeated probes to accommodate this access pattern

The client must perform $\Omega(n)$ repeated probes to accommodate this access pattern

Key Idea: ORAM security implies that even for any other access pattern, there must be at least $\Omega(n)$ probes allowing to move all data from left to right

The client has to move all data from each left half of the access pattern to each right half

The client cannot remember all of its data

 locally, so it must send it to the server

Client must request access

 to the same memorylocations in the left and the right subtree

Client must request access

 to the same memory locations in the left and the right subtreeThere are $\Omega(n)$ physical locations in common in the left and right subtrees

Client must probe the same memory locations in the left and the right subtree

There are $\Omega(n)$ probes in common in the left and right subtrees

$\Omega(n \log n)$

Yes, There is an Oblivious RAM Lower Bound!

$$
\begin{aligned}
& \text { Kasper Green Larsen* and Jesper Buus Nielsen" } \\
& { }^{1} \text { Computer Science. Aarhus University } \\
& { }^{2} \text { Computer Science \& DIGIT, Aarhus University }
\end{aligned}
$$

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich an Ostrovky (JACM'96] is a (possibly randomized) RAM, for which the

 memory access pattern reveals no information about the operations per formed. The main performance metric of an ORAM is the bandwidt overhead, i.e., the multipicicative factor extra memory blocks that mustbe accessed to hide the operation sequence. In their seminal paper in
troducing the ORA, troducing the ORAM, Goldreich and Ostrovsky proved an amortize
$\Omega($ lgn n bandwidth overhead lower bound for ORAMs with memory $\Omega(\lg n)$ bandwidth overhead lower bound for ORAMs with memory siz
n. Their lower bound is very strong in the sense that it applies to the n. hieir "ower bound is very strong in the sense that it applies to the
offine" setting in which the ORAM knows the entire sequence of ope ations ahead of time
However, as pointed
However, as pointed out by Boyle and Naor [ITCS'16] in the paper "Is
there an oblivious there an oblivious RAM lower bound?, there are two caveats wiptt the
lower bound of Goldreich and Ostrovsky: 1) it only applies to " in bins" algorithms, ie., algorithms where the ORAM may only shuafl blocks around and not apply any sophisticated encoding of the data
 Naor showed that removing the "balls in bins" assumption would result
in super linear lower bounds for sorting circuits, a long standing open probem in circuit complexity. As a way to circumventing this barrier
they also proposed a notion of as "online" ORAM, which is an ORAM they also proposed a notion of an "online" ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner They argued that most known ORAM constructions work in the online
setting as well. setting as well.
Our contribution
Our contribution is an $\Omega(1 \mathrm{~g} n)$ lower bound on the bandwidth overhea
of andine ORAM, even if we require allow arbiitrary representations of data, thus greatly strengthenenity lower bound of Goldreich and Ostrovsky in the online setting Our the bound applies to ORAMs with memory size n and any word size r ? The bound therefore asymptotically matches the known upper bound

Introduction
It is often attractive to store data at an untrusted party, and only retrieve the
needed parts of it. Encryption can help ensure that the party storing the data eeded parts of it. Encryption can help ensure that the party storing the dat - Supported by a Villum Young Investigator grant 13163 and an AUFF starting grant
Supported by the European Union's Horizon 2020 research and innovation programme under grant agreement \#731583 (SODA).

Any ORAM must have
 $\Omega(\log n)$ overhead

Yes, There is an Oblivious RAM Lower Bound!

```
Kasper Green Larsen* and Jesper Buus Nielsen*
    2 Computer Science & DIGIT, Aarhus University
```


Any ORAM must have $\Omega(\log n)$ overhead

OptORAMa: Optimal Oblivious RAM

Gilad Asharoy Bar-llan University	Ilan Komargodski NTT Research and Hebrew University	Wei-Kai Lin Cornell University
Kartik Nayak VMware and Duke Universit	Enoch Peserico Univ. Padova	Cornell Unive

[^0]... and there exists an ORAM with $O(\log n)$ overhead

[^0]: Abstract
 Oblivious RAM (ORAM), frist introduced in the ground-breaking work of Goldreich and strovsky (STOC '87 and J. ACM' '96) is a technique for provably obfuscating programs' access compile a a eneral program to an oblivious counterpart, it is well-known that $\Omega($ log $N)$ amortized
 blowup is necessary, where N is the size of the logical memory. This was shown in Goldreich and ostrovksy's orsignal where N is whe size of the tagistical security and in a somewhat restricted model (the so called balls-and-bins model), and recently by Larsen and Nielsen (CRYPTO '18) for omputational security.
 A long standing open
 A long standing open question is whether there exists an optimal ORAM construction that
 matches the aforementioned logarithmic lower bunds (without making large memory word
 his problem and prosent the frist secure ORAM with O(log N) amortized blowup, assuming
 one-way functions. Our result is isppired by and non-trivially improves on the reecnt beautiful work of Patel et al. (FOCS $\left.{ }^{1} 18\right)$ who gave a construction with $O(\log N \cdot \log \log N)$ amortized blowup, assuming one way functions. One of our building blocks of independent interest is a linear-time deterministic oblivious algorithm for tight compaction: Given an array of n elements where some elements are marked,
 we permute the elements in the array so that all marked elements end up in the front of the algorithm or tight compaction: Given an array of n elements where some elements are marked,
 we permute the elements in the arra so that all marked elements end up in the font of the
 array. Our $O(n)$ algorithm improves the previously best known deterministic or randomized array, Our $O(n)$ algorithm improves the previously best known determini
 algorithms whose rumning time is $O(n \cdot \log n)$ or $O(n \cdot \log \log n)$, respectively

