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Today’s objectives

See a more practical construction of ORAM

Prove ORAM lower bound



Setting General-Purpose Tools
GMW Protocol
Multi-party

Semi-honest Security

Multi-round
Malicious Security

Garbled Circuit

Zero Knowledge Constant Round
Two Party
Primitives

Oblivious Transfer
Pseudorandom functions/encryption
Commitments

ORAM



Main Memory

Oblivious RAM Protocol
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Square Root ORAM (Ostrovsky '92)
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Square Root ORAM (Ostrovsky '92)
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4} ’@‘ Overhead

For every logical access, the server sends to the client
amortized O(ﬁ) physical elements
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For every logical access, the server sends to the client
amortized O(ﬁ) physical elements

Natural question: How low can we go in terms of overhead?
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We present Path CRAM, an extremely simple Oblivious RAM protocol with a small amount of chent storage.
Parlly due 1o ils simplivily, Path ORAM is the mos! practical ORAM scheme known 1o date with small chent

sterage. We formally prove that Path ORAM has a O(log N) bandwidth cost for blocks of size B = Q{log® N)
bits. For such black sizes, Path ORAM is asymptotically better than the best-known ORAM schemes with
small client storage. Due to its practicality, Path ORAM has been adopted in the design of secure processors
since its proposal.
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O(log” n) physical accesses

18:8

Access(op, a.data”):

x 4 position|a|
position[a] - x* < UniformRandom(0...2"% — 1)
for (< {0.1,..., L} do
S « S U ReadBucket(P(x,f))
end for
data < Read block a from S
if op = write then
S« (S —{(a,z.data)}) U {(a, z*,data™)}
end if

cforlc {L.L—1,..., 0} do

S« {(a',2',data’) € S : P(x,f) = P(a',¢)}
5" « Select min(|S’|, Z) blocks from S’.
S«—S—§

WriteBucket(P(x, ), S")

- end for
16:

return data

s

Fig. 1.

R R

Protocol for data access. Read or write a data block identified by a. If op = read, the input parameter
data® = None, and the Access operation reads block a from the ORAM. If op = write, the Access operation
writes the specified data® to the block identified by a and returns the block’s old data.

E. Stefanov et al.
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Path Invariant: Each
node Is assigned a
uniformly random leaf
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To find an element,
client searches the
path to the leaf

Logical

address Leal
0 10
1 5
2 7

Position Map
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Fetched element is stored In
a small stash on the client

Logical

address Leaf
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If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them
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If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them

Eviction: Push elements In
stash and on path as far
down the path as possible
while keeping the path
Invariant
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If we continue to do this,
stash will grow

Client chooses two paths
and evicts elements along
them

Eviction: Push elements in
stash and on path as far
down the path as possible
while keeping the path
Invariant



Path ORAM

Each data item is assigned
a uniformly random leaf

To perform an access, client
queries the path to the
appropriate leaf

Because leaves are chosen
uniformly, we can simulate
what the server sees

After access, the client
writes back to the stash
and assigns a fresh leaf

To avoid the stash growing
too large, client reads paths
and evicts them
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Each data item is assigned

C. C]. a uniformly random leaf
/\ To perform an access, client
C] .. C. C. queries the path to the

appropriate leaf

Because leaves are chosen
uniformly, we can simulate
what the server sees

| After access, the client
If an element does not fit on writes back to the stash

the path, we keep it in stash 8 ' and assigns a fresh leaf

Careful analysis shows that To avoid the stash growing
w.h.p. the stash will not too large, client reads paths
grow “too big” and evicts them
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Question: The position map has O(n) size. How does the client store it?
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Question: The position map has O(n) size. How does the client store it?

Answer: With another (recursively instantiated) ORAM. There will be
O(log n) total levels of ORAM.
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Question: The position map has O(n) size. How does the client store it?

Answer: With another (recursively instantiated) ORAM. There will be
O(log n) total levels of ORAM.

An ORAM requires reading a path of length O(log n), and there are
O(log n) ORAMSs

O(log n) total blow-up



:
g

u

§

e e

Path ORAM: An Extremely Simple Oblivious RAM Protocol

EMIL STEFANQV, UC Berkeley

MARTEN VAN DIJK, University of Connecticut

ELAINE SHI, Cornell University

T.-H. HUBERT CHAN, University of Hong Kong

CHRISTOPHER FLETCHER, University of lllinois at Urbana-Champaign
LING REN, XIANCYAO YU, and SRINIVAS DEVADAS, MIT CSAIL

We present Path CRAM, an extremely simple Oblivious RAM protocol with a small amount of chent storage.
Parlly due 1o ils simplivily, Path ORAM is the mos! practical ORAM scheme known 1o date with small chent

sterage. We formally prove that Path ORAM has a O(log N) bandwidth cost for blocks of size B = Q{log® N)
bits. For such black sizes, Path ORAM is asymptotically better than the best-known ORAM schemes with
small client storage. Due to its practicality, Path ORAM has been adopted in the design of secure processors
since its proposal.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Svstems): Se-
curity and Protection

General Terms: Algorithms, Security
Additional Key Words and Phrases: Cblivious RAM, CRAM, Path ORAM, access pattern

ACM Reference format:

Eimnil Stefanov. Marlen Van Dijk, Elaine Shi, T-H. Huberl Chan, Chrislopher Flelcher, Ling Ren, Xiangyzo Yu,
and Srinivas Devadas. 2018, Path ORAM: An Extremely Simple Oblivious RAM Protocol. 7. ACM 65, 4, Article
18 (April 2018), 26 pages.

kttps://doi.org/10.1145/317 /872

A conference version of the article has appeared in ACM Conference on Computer and Communications Security (CCS),
2013,

This werk 18 partially supported by the NSF Graduate Research Fellowship grants DGE-0Y46797 and DGE-1122374, the
Do NDSEG Fcllowship. NSF grant CNS-1314857, DARPA URASH progzram N66001-10-2-4089, and & grent from the Ame-
zen Web Services :n Education program. Any opinions, f£ndings, and conclus:ions or recaornmendations expressed in this
material are thase of the author(s) and do not recessarily reflect the views of the funding agencies.

The research was supported in part hy a grant from Hong Konpg RGC under the comtract HX1719312E.

Authors' addresses: E. Stefanov, Department of Electrical Engineerirg and Computer Sciences, UC Berkeley, CA 94720,
USA; email: emil@berkeley.edu; M. V. Dijk, Electrical and Computing Engineering Department, Univers:ity of Connect:-
cut, Storrs-Mansbeld, U1 06269, USA; email: vandijk@engr.uconn.edu; E. Shi, Department of Computer Science, Comnell
University, [thaca, NY 14353-7501, USA; email: clainc@cs.corncll.edu; T.-H. H. Chan, Department of Computer Science,
University of Hong Kong, Pokfulam Road, Hong Kong; emaik hubert@cshkuhk; C. Fletcher, Computer Science Depart-
ment, Uriversity of Illinois-Urbana Champaign, Urbana, IL 61801, USA; email: cwfletch@illino:s.edu. L. Ren, X Yu, and S.
Devadas, MIT CSAIL, Cambridge, MA 02139, TISA; emails: {renling, yxy, devadas)@csail mit.edu.

Permission to make digital or hard copies of 21l or part of this work for personal or classrcom use is granted without fae
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the Full citation on the first page. Copynzhts for compenents of this work owred by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
priar specific permission and/or a fee. Request permissions from permissions@acm.org,.

© 2018 ACM 0004-5411/2016/04-ART1€ $13.0C

https://doi.org/10 1145/3177872

Journal of the ACM, Vol 65, No. 4, Article 18, Publication date: Apnl 2018,

O(log” n) physical accesses

18:8

Access(op, a.data”):

x 4 position|a|
position[a] < x* « UniformRandom(0...2"% — 1)
for (< {0.1,..., L} do
S « S U ReadBucket(P(x,f))
end for
data < Read block a from S
if op = write then
S« (S~ {(a,z.data)}) U {(a, z*,data™)}
end if

cforlc {L.L—1,..., 0} do

S« {(a',2',data’) € S : P(x,f) = P(2',¢)}
5" « Select min(|S’|, Z) blocks from S’.
S«—S—-§

WriteBucket(P(x, ), S")

- end for
16:

return data

s

Fig. 1.
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Protocol for data access. Read or write a data block identified by a. If op = read, the input parameter
data® = None, and the Access operation reads block a from the ORAM. If op = write, the Access operation
writes the specified data® to the block identified by a and returns the block’s old data.
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ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound!

Kasper Green Larsen* and Jesper Buus Nielsen**

Fact (informal): Any secure ORAM must
2 Gomputer Science & DIGIT, Aachus University | ncur ove rh eq d a.t I eq St Q (1 O g n)

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovsky [JACM'96) is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must
be accessed to hide the operation sequence. In their seminal paper in-
troducing the ORAM, Goldreich and Ostrovsky proved an amortized
f2(lg n) bandwidth overhead lower bound for ORAMs with memory size
n. Their lower bound is very strong in the sense that it applies to the
“offline” setting in which the ORAM knows the entire sequence of oper-
ations ahead of time.

However, as pointed out by Boyle and Naor [ITCS'16] in the paper “Is
there an oblivious RAM lower bound?”, there are two caveats with the
lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls
in bins" algorithms, i.e., algorithms where the ORAM may only shuffle
blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the “balls in bins” assumption would result
in super linear lower bounds for sorting circuits, a long standing open
problem in circuit complexity. As a way to circumventing this barrier,
they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner,
They argued that most known ORAM constructions work in the online
setting as well.

Our contribution is an f2(lgn) lower bound on the bandwidth overhead
of any online ORAM, even if we require only computational security and
allow arbitrary representations of data, thus greatly strengthening the
lower bound of Goldreich and Ostrovsky in the online setting. Our lower
bound applies to ORAMs with memory size n and any word size r > 1.
The bound therefore asvmptotically matches the known unper bounds
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Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound!
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Fact (informal): Any secure ORAM must
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Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and

Ostrovsky [JACM'96] is a (possibly randomized) RAM, for which the

memory access pattern reveals no information about the operations per-

formed. The main performance metric of an ORAM is the bandwidth .

overhead, i.e., the multiplicative factor extra memory blocks that must n
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troducing the ORAM, Goldreich and Ostrovsky proved an amortized

2(lgn) bandwidth overhead lower bound for ORAMs with memory size
n. Their lower bound is very strong in the sense that it applies to the

* All access patterns should look the

However, as pointed out by Boyle and Naor [ITCS'16] in the paper “Is

there an oblivious RAM lower bound?””, there are two caveats with the

lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls r T ]
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blocks around and not apply any sophisticated encoding of the data,

and (2), it only applies to statistically secure constructions. Boyle and . .

Naor showed that removing the “balls in bins" assumption would result

e (Certaln access patterns will force the
problem in circuit complexity. As a way to circumventing this barrier,

they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner,

client to save its data on the server,

Our contribution is an f2(lg n) lower bound on the bandwidth overhead

of any online ORAM, even if we require only computational security and . .

allow arbitrary representations of data, thus greatly strengthening the

lower bound of Goldreich and Ostrovsky in the online setting, Our lower t h e n ret rI eve It I at e r
bound applies to ORAMs with memory size n and any word size r > 1.

The bound therefore asvmptotically matches the known unper bounds



We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
protocol Is
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We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
Q protocol Is

Model

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)
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SO

We are trying to prove that any ORAM
protocol must have log overhead

Important to formalize what an ORAM
Q protocol is

Model

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:
1. C queries location 1

2. S sends content of location 1
3. C sends back new value

4. S saves the new value in location 1
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We are trying to prove that any ORAM
protocol must have log overhead

SO

Important to formalize what an ORAM
Q protocol is

Model

Client learns its queries one at a time, and must satisfy
any reads as soon as they come in (online)

ORAM protocol is a sequence of probes:

1. C queries location 1 Client can hold only

2. S sends content of location 1 O(1) data items
3. C sends back new value

4. S saves the new value in location 1

29
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Logical Access , ,
Write || Write
PhySicaI Access Probe || Probe || Probe || Probe || Probe || Probe
Pattern 17 42 0 13 52 19



Logical Access
Read Read Read Read
Pattern




The logical access pattern implicitly has dependencies

The client must somehow get all data to move
from the source to the target of the arrow

Logical Access
Pattern

Pattern 17 42 0 13 52 19 20 21 3




Basic Observation: If the client writes data
using a particular sequence of probes, it must
probe that same location again to read the data

Logical Access
Pattern

Pattern 17 42 0 13 52 19 20 21 3




Basic Observation: If the client writes data
using a particular sequence of probes, it must
probe that same location again to read the data

We can construct access patterns that are
particularly “difficult”

Logical Access
Pattern

Pattern 17 42 0 13 52 19 20 21 3




We can construct access patterns that are
particularly “difficult”

Read Read Read Read
0 1 2 3




The client has to move all data from the left half
of the access pattern to the right half

The client cannot remember all of its data
locally, so it must send it to the server

Read Read Read Read
0 1 2 3




The client has to move all data from the left half
of the access pattern to the right half

The client cannot remember all of its data
locally, so it must send it to the server

Information theoretically, the client must save
O(n) items to the server

Write |[IWrite || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3

———  —




The client must perform €2(n) repeated probes
to accommodate this access pattern

Write |[IWrite || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3




The client must perform €2(n) repeated probes
to accommodate this access pattern

Key Idea: ORAM security implies that even for any

other access pattern, there must be at least £2(n)
probes allowing to move all data from left to right

Write |[IWrite || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3







The client has to move all data from each left
half of the access pattern to each right half

The client cannot remember all of its data
locally, so it must send it to the server







Read Read Read Read
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Client must request access
to the same memory
locations in the left and the
right subtree @

Write || Write || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3




Client must request access
to the same memory
locations in the left and the
right subtree

There are £2(n) physical
locations in common in the
® left and right subtrees

Write || Write || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3




Client must probe the same There are £2(n) probes in

memory locations in the left > nl/2 common in the left and right
and the right subtree subtrees

Write || Write || Write || Write Read Read Read Read
0 1 2 3 0 1 2 3
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Write || Write Read Read
0 1 0 1




Write || Write Read Read
0 1 0 1
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Yes, There is an Oblivious RAM Lower Bound!

Any ORAM must have

' Computer Science. Aarhus University
? Computer Science & DIGIT, Aarhus University

et ()(log n) overhead

Ostrovsky [JACM'96] is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must
be accessed to hide the operation sequence. In their seminal paper in-
troducing the ORAM, Goldreich and Ostrovsky proved an amortized
f2(lgn) bandwidth overhead lower bound for ORAMs with memory size
n. Their lower bound is very strong in the sense that it applies to the
“offline” setting in which the ORAM knows the entire sequence of oper-
ations ahead of time.

However, as pointed out by Boyle and Naor [ITCS'16] in the paper “Is
there an oblivious RAM lower bound?”, there are two caveats with the
lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls
in bins" algorithms, i.e., algorithms where the ORAM may only shuffle
blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the “balls in bins” assumption would result
in super linear lower bounds for sorting circuits, a long standing open
problem in circuit complexity. As a way to circumventing this barrier,
they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner,
They argued that most known ORAM constructions work in the online
setting as well.

Our contribution is an f2(lgn) lower bound on the bandwidth overhead
of any online ORAM, even if we require only computational security and
allow arbitrary representations of data, thus greatly strengthening the
lower bound of Goldreich and Ostrovsky in the online setting. Our lower
bound applies to ORAMs with memory size n and any word size r > 1.
The bound therefore asymptotically matches the known upper bounds
when r = 2(lg° n).

1 Introduction

It is often attractive to store data at an untrusted party, and only retrieve the
needed parts of it. Encryption can help ensure that the party storing the data

* Supported by a Villum Young Investigator grant 13163 and an AUFF starting grant.
** Supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement #731583 (SODA).




Yes, There is an Oblivious RAM Lower Bound!

Any ORAM must have
(Q(log n) overhead

* Computer Science & DIGIT, Aarhus University

OptORAMa: Optimal Oblivious RAM’

Gilad Asharov [lan Komargodski Wei-Kai Lin
Bar-Ilan University NTT Research and Cornell University
Hebrew University d t h .
| ... dll ere exIsts an
Kartik Nayak Enoch Peserico Elaine Shi
VMware and Duke University Univ. Padova Cornell University
ORAM with O(IOg n)
Abstract

Oblivious RAM (ORAM), first introduced in the ground-breaking work of Goldreich and
Ostrovsky (STOC "87 and J. ACM "96) is a technique for provably obfuscating programs’ access
patterns, such that the access patterns leak no information about the programs’ secret inputs. To

compile a general program to an oblivious counterpart, it is well-known that (log N) amortized
blowup is necessary, where N is the size of the logical memory. This was shown in Goldreich and
Ostrovksy's original ORAM work for statistical security and in a somewhat restricted model
(the so called balls-and-bins model), and recently by Larsen and Nielsen (CRYPTO '18) for
computational security.

A long standing open question is whether there exists an optimal ORAM construction that
matches the aforementioned logarithmic lower bounds (without making large memory word
assumptions, and assuming a constant number of CPU registers). In this paper, we resolve
this problem and present the first secure ORAM with O(log N) amortized blowup, assuming
one-way functions. Our result is inspired by and non-trivially improves on the recent beautiful
work of Patel et al. (FOCS "18) who gave a construction with O(log N - loglog N) amortized
blowup, assuming one-way functions.

One of our building blocks of independent interest is a linear-time deterministic oblivious
algorithm for tight compaction: Given an array of n elements where some elements are marked,
we permute the elements in the array so that all marked elements end up in the front of the
array. Our O(n) algorithm improves the previously best known deterministic or randomized
algorithms whose running time is O(n - logn) or O(n - log log n), respectively.

Keywords: Oblivious RAM, randomized algorithms, compaction.




